

The European Journal of Orthodontics, Volume 18, Issue 6: December 1996.

The extent of enamel surface fractures. A quantitative comparison of thermally debonded ceramic and mechanically debonded metal brackets by energy dispersive micro- and image-analysis

U. Stratmann¹, K. Schaarschmidt², H. Wegener³ and U. Ehmer³

¹Institute of Anatomy, ²Clinic of Pediatric Surgery, ³Clinic of Dentistry, Division of Orthodontics, University of Munster, Germany

ABSTRACT

This clinical study investigated the practical value of two methods for debonding brackets attached by the adhesive Concise to acid-etched enamel surfaces. Forty-two Ultratrim Standard metal brackets and 42 Fascination ceramic brackets were collected from juvenile patients undergoing orthodontic treatment. All metal brackets were mechanically debonded by a conventional bracket removal plier, whereas the ceramic brackets were thermally debonded by a commercial Dentaurum ceramic debonding unit. All brackets were evaluated by scanning electron microscopy for the morphology of their adhesive fracture surfaces and for the occurrence of mineral-like particles attached to the adhesive fracture surfaces. These particles were analysed by an energy dispersive X-ray microprobe for their Ca/P ratios and by image analysis of scanning electron micrographs for measurement of their areas. The scanning electron micrographs showed 4 types of debonding fractures. The most frequent fracture was type 1 (between adhesive and bracket base) and type 3 (between adhesive and enamel surface). In the groups of mechanically debonded metal brackets type 1 (38 per cent) and type 2 (45 per cent) showed a similar frequency, whereas thermally debonded ceramic brackets predominantly showed fracture type 1 (79 per cent) and only a minor percentage of type 2 (11 per cent). A statistical evaluation was applied to estimate the range of reproducibility of fracture types with a 95 per cent confidence interval (level of significance [α]=5 per cent). In both groups the microprobe analysis of fracture surfaces lying completely or partly between adhesive and enamel surface identified the mineral-like particles as enamel mineral. They occurred partly as single particles (range of thickness: 5-25 μm , mean area: 3500 μm^2) and partly as a coherent covering with a total area of 1.9-5.8 mm^2 . It is concluded that the thermodebonding technique is superior to conventional mechanical debonding, because the frequent occurrence of fracture type 1 after thermodebonding affords a protection for the enamel surface, whereas mechanical debonding entails a comparatively high risk of enamel fractures.

Pages 655-662

This page is run by [Oxford University Press](#), Great Clarendon Street, Oxford OX2 6DP, as part of the [OUP Journals](#) World Wide Web service.

Comments and feedback: www-admin@oup.co.uk

URL: http://www.oup.co.uk/eortho/hdb/Volume_18/Issue_06/180655.sgm.abs.html

Last modification: 6 November 1997.

[Copyright](#) © Oxford University Press, 1997.